

Quantum Integer Programming

47-779

Essential Concepts

Carnegie Mellon University Tepper School of Business William Larimer Mellon, Founder

- Motivating Applications and Focus
- History of 20th Century Computing, Vocabulary
- Test-Sets, Graver Basis
- Ising Model, QUBO
- o GAMA
- o Quantum Computing v2.0
- O Closing Remarks

What can quantum computing do for non-linear integer optimization?

Carnegie Mellon University Tepper School of Business

Supply Chain Management

- O Computational Biology
- O Portfolio Optimization
- O Track Reconstruction

Carnegie Mellon University Tepper School of Business

Physics-based algorithms and computing machines that provide a novel approach to solving difficult optimization problems.

History of 20th Century Computing

- O 1900-1929: Quantum Mechanics
- O 1925: Ising Model (Lenz)
- O 1926-1947: PNP Junction, Transistor
- O 1936: Theory of Computing (Turing)
- 1947-1957: Integrated Circuit ("Chip")
- O 1954-1956: Oscillation Based Computing (von Neumann)
- 1939-1968: HP and birth of Silicon Valley; Intel
- 1911-1998: IBM, Microsoft, Apple, Amazon, Google

O 1981: Quantum Computing (Feynman)
 Carnegie Mellon University
 Tepper School of Business William Larimer Mellon, Founder

- Bits, Turing Machine, Logic gates
- o Sequential State Computing
- o Qubits, Spin, Superposition, Entanglement
- o Gate/Circuit model, Quantum Logic
- o Adiabatic Quantum Computing, Quantum annealing
- o Ising Machine
- Collective State Computing

Adiabatic Quantum Computing v Gate/Circuit

- **Test sets v** LP Relaxation/B&B/Sub-gradients
- Computational Performance v Worst
 Case Complexity Analysis
- Supply Chain/Finance/Genomics v
 Cryptography/Quantum Chemistry

Carnegie Mellon University Tepper School of Business

Ising Problem (Combinatorial Optimization Version)

Problem Statement: Given couplings between a set of spins, find the configuration that minimizes the energy function:

$$H(ec{\sigma}) = -\sum_{1 \leq i < j \leq N} J_{ij} \sigma_i \sigma_j$$

Carnegie Mellon University Tepper School of Business

William Larimer Mellon, Founder

Figure credit: Science doi:10.1126/science.354.6310.269

AQC finds the ground state through adiabatic quantum evolution that slowly evolves the ground state of the initial known system into the sought ground state of the problem:

$$H(s) = (1-s)H_{initial} + sH_{problem}.$$

The **slow time** s = t/T goes from 0 to 1 (where *T* is the effective total time of the adiabatic evolution).

In practice, *s* could be replaced by a good g(s), for improved performance as it affects the minimum spectral gap of the resulting H(g(s)).

Carnegie Mellon UniversityTepper School of BusinessWilliam Larimer Mellon, Founder

D-Wave 2000Q

Carnegie Mellon University Tepper School of Business

Carnegie Mellon University Tepper School of Business ^{m/} *William Larimer Mellon, Founder*

End to End Flowchart for Quantum Annealing

Carnegie Mellon University Tepper School of Business

Classical Solvers

Simulated Annealing

"Brute Force" QUBO

• GAMA: Test-Sets, Graver Basis

Carnegie Mellon University Tepper School of Business

Test Sets in Optimization

• Nonlinear integer program:

$$(IP)_{A,b,l,u,f}: \qquad \min \left\{ f(x) : Ax = b, x \in \mathbb{Z}^n , l \le x \le u \right\}$$
$$A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^m, l,u \in \mathbb{Z}^n, f: \mathbb{R}^n \to \mathbb{R}$$

- Can be solved via *augmentation procedure*:
 - 1. Start from a feasible solution
 - 2. Search for augmentation direction to improve
 - 3. If none exists, we are at an optimal solution.

Carnegie Mellon UniversityTepper School of BusinessWilliam Larimer Mellon, Founder

 Graver Basis is the finite set of conformal minimal elements of:

$$\mathcal{L}^*(A) = \left\{ x \middle| Ax = \mathbf{0}, x \in \mathbb{Z}^n , A \in \mathbb{Z}^{m \times n} \right\} \setminus \left\{ \mathbf{0} \right\}$$

• Partial order:

 $\forall x, y \in \mathbb{R}^n \quad x \sqsubseteq y \quad st. \quad x_i y_i \ge 0 \quad \& \quad |x_i| \le |y_i| \quad \forall \quad i = 1, ..., n$

• x is conformal minimal to y: $x \sqsubseteq y$

Carnegie Mellon University Tepper School of Business

Graver Basis is Test Set for:

 \circ min cx, Linear

○ max $f(Wx), W \in \mathbb{Z}^{d \times n}$, f convex on \mathbb{Z}^d

min
$$\sum f_i(x_i)$$
, f_i convex (separable convex)
min $|x - x_0|_p$

Some other nonlinear costs

Carnegie Mellon University Tepper School of Business

$$\mathbf{A}\mathbf{x} = \mathbf{0}, \quad \mathbf{x} \in \mathbb{Z}^{n} \quad , \quad \mathbf{A} \in \mathbb{Z}^{m \times n}$$

min $\mathbf{x}^{T}\mathbf{Q}_{\mathbf{I}}\mathbf{x} \quad , \quad \mathbf{Q}_{\mathbf{I}} = \mathbf{A}^{T}\mathbf{A} \quad , \quad \mathbf{x} \in \mathbb{Z}^{n}$
 $\mathbf{x}^{T} = \begin{bmatrix} x_{1} & x_{2} & \dots & x_{i} & \dots & x_{n} \end{bmatrix} \quad , \quad x_{i} \in \mathbb{Z}$

• Integer to binary transformation: $x_i = \mathbf{e}_i^T X_i$ $X_i^T = \begin{bmatrix} X_{i,1} & X_{i,2} & \cdots & X_{i,k_i} \end{bmatrix} \in \{0,1\}^{k_i}$ • Binary encoding: $\mathbf{e}_i^T = \begin{bmatrix} 2^0 & 2^1 & \cdots & 2^{k_i} \end{bmatrix}$

• Unary encoding: \mathbf{e}_i^T

$$\mathbf{f} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & &$$

Carnegie Mellon University Tepper School of Business

QUBO for Kernel....

$$\mathbf{x} = \mathbf{L} + \mathbf{E}\mathbf{X} = \begin{bmatrix} Lx_1 \\ Lx_2 \\ \vdots \\ Lx_n \end{bmatrix} + \begin{bmatrix} \mathbf{e}_1^T & \mathbf{0}^T & \cdots & \mathbf{0}^T \\ \mathbf{0}^T & \mathbf{e}_2^T & \cdots & \mathbf{0}^T \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0}^T & \mathbf{0}^T & \cdots & \mathbf{e}_n^T \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix}$$

(L is the lower bound vector)

• QUBO: min $\mathbf{X}^T \quad \mathbf{Q}_{\mathbf{B}} \mathbf{X}$, $\mathbf{Q}_{\mathbf{B}} = \mathbf{E}^T \mathbf{Q}_{\mathbf{I}} \mathbf{E} + diag \left(2\mathbf{L}^T \mathbf{Q}_{\mathbf{I}} \mathbf{E} \right)$ $\mathbf{X} \in \left\{ 0, 1 \right\}^{nk}$, $\mathbf{Q}_{\mathbf{I}} = \mathbf{A}^T \mathbf{A}$

Carnegie Mellon University Tepper School of Business

 $\mathbf{A}\mathbf{x} = \mathbf{b} \qquad \qquad l \le \mathbf{x} \le u$

min
$$\mathbf{X}^T \mathbf{Q}_{\mathbf{B}} \mathbf{X}, \quad \mathbf{Q}_{\mathbf{B}} = \mathbf{E}^T \mathbf{Q}_{\mathbf{I}} \mathbf{E} + 2 diag \left[\left(\mathbf{L}^T \mathbf{Q}_{\mathbf{I}} - \mathbf{b}^T \mathbf{A} \right) \mathbf{E} \right]$$

 $\mathbf{X} \in \left\{ 0, 1 \right\}^{nk}, \quad \mathbf{Q}_{\mathbf{I}} = \mathbf{A}^T \mathbf{A}$

- Using adaptive centering and encoding width for feasibility bound
- Results in many feasible solutions!

Capital Budgeting

- Important canonical Finance problem
- μ_i expected return σ_i variance
- ε risk

min
$$-\sum_{i=1}^{n}\mu_{i}x_{i} + \sqrt{\frac{1-\varepsilon}{\varepsilon}}\sum_{i=1}^{n}\sigma_{i}^{2}x_{i}^{2}$$

$$Ax = b \quad , \quad x \in \{0,1\}^n$$

Graver Basis in 1 D-Wave call (1 bit encoding)

 $A \in M_{5 \times 50}(\{0, \cdots, t\})$ $\mu \in [0, 1]^{50 \times 1}$ $\sigma \in [0, \mu]^{50 \times 1}$

when t = 1 we have: $\mathcal{G}(A) \in M_{50 imes 304}(\{-1, 0, +1\})$

Carnegie Mellon University Tepper School of Business

~ 6500 Solutions in One Call!

• From any feasible point in \sim 24-30 augmenting steps reach optimal cost = -3.69

Carnegie Mellon University Tepper School of Business william

	Quantum Computing v1.0	Quantum Computing v2.0		
	1981-2017	2017-		
Computing Model	Gate/Circuit Model	Ising Model		
	Sequential State computation	Collective State computation		
Algorithms	Worst-case Performance	Hybrid Quantum-Classical		
	Quantum Complexity Theory (QCT)	Quantum Integer Programming (QuIP)		

Carnegie Mellon University Tepper School of Business

Nvidia, Google, Fujitsu, Hitachi, Toshiba...

GPUs and TPUs

Complementary metal-oxide semiconductors (CMOS)

Digital annealers

Oscillator Based Computing

Fiber beamsplitter

Carnegie Mellon University Tepper School of Business

Available Ising Solvers

	Fixstars Optigan	D-Wave 2000Q	Hitachi CMOS Annealing	Fujitsu Digital Annealer	Toshiba SBM
Calculation method	GPU	Quantum annealing	Digital circuit	Digital circuit	GPU
Maximum number of bits	Over 100,000	2,048 (16x16x8)	61,952 (352x176)	1,024 / 8,192	10,000
Coefficient parameter	Digital (32 / 64bit)	Analog (about 5bit)	Digital (3bit)	Digital (16/64 bit)	Digital (32bit)
Combined graph	Fully combined	Chimera graph	King Graph	Fully combined	Fully combined
Total number of combined conversion bits	65,536	64	176	1,024 / 8,192	1,000
API endpoint	Fixstars	D-Wave Cloud	Annealing Cloud Web	DA Cloud	AWS

Hardware Challenge

Cheap Room-Temperature Based on available components Non-classical computation Coherent Ising Machine (CIM) Oscillation Based Computing

March 2020: NSF \$10M funding to NTT, Stanford, Cornell, NASA consortium for CIM!

Carnegie Mellon University Tepper School of Business

- Non-linear Integer Programs model a variety of real world problems from many domains
- Solving them classically has limitations
- We explored non-classical approaches based on Ising
- GAMA is a general purpose heuristic that utilizes Test-Sets
- There are a variety of options to solve large scale Ising model, expect more in the future
- What will 21st Century Computing look like?